Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.172
Filtrar
1.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

2.
Phys Rev Lett ; 132(13): 130603, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613293

RESUMO

In the quest to build general-purpose photonic quantum computers, fusion-based quantum computation has risen to prominence as a promising strategy. This model allows a ballistic construction of large cluster states which are universal for quantum computation, in a scalable and loss-tolerant way without feed forward, by fusing many small n-photon entangled resource states. However, a key obstacle to this architecture lies in efficiently generating the required essential resource states on photonic chips. One such critical seed state that has not yet been achieved is the heralded three-photon Greenberger-Horne-Zeilinger (3-GHZ) state. Here, we address this elementary resource gap, by reporting the first experimental realization of a heralded 3-GHZ state. Our implementation employs a low-loss and fully programmable photonic chip that manipulates six indistinguishable single photons of wavelengths in the telecommunication regime. Conditional on the heralding detection, we obtain the desired 3-GHZ state with a fidelity 0.573±0.024. Our Letter marks an important step for the future fault-tolerant photonic quantum computing, leading to the acceleration of building a large-scale optical quantum computer.

3.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564326

RESUMO

Optical thin films with high-reflectivity (HR) are essential for applications in quantum precision measurements. In this work, we propose a coating technique based on reactive magnetron sputtering with RF-induced substrate bias to fabricate HR-optical thin films. First, atomically flat SiO2 and Ta2O5 layers have been demonstrated due to the assistance of radio-frequency plasma during the coating process. Second, a distributed Bragg reflector (DBR) mirror with an HR of ∼99.999 328% centered at 1397 nm has been realized. The DBR structure is air-H{LH}19-substrate, in which the L and H denote a single layer of SiO2 with a thickness of 237.8 nm and a single layer of Ta2O5 with a thickness of 171.6 nm, respectively. This novel coating method would facilitate the development of HR reflectors and promote their wide applications in precision measurements.

4.
World J Clin Cases ; 12(9): 1560-1568, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576738

RESUMO

BACKGROUND: Unicompartmental knee arthroplasty (UKA) has great advantages in the treatment of unicompartmental knee osteoarthritis, but its revision rate is higher than that of total knee arthroplasty. AIM: To summarize and analyse the causes of revision after UKA. METHODS: This is a retrospective case series study in which the reasons for the first revision after UKA are summarized. We analysed the clinical symptoms, medical histories, laboratory test results, imaging examination results and treatment processes of the patients who underwent revision and summarized the reasons for primary revision after UKA. RESULTS: A total of 13 patients, including 3 males and 10 females, underwent revision surgery after UKA. The average age of the included patients was 67.62 years. The prosthesis was used for 3 d to 72 months. The main reasons for revision after UKA were improper suturing of the surgical opening (1 patient), osteophytes (2 patients), intra-articular loose bodies (2 patients), tibial prosthesis loosening (2 patients), rheumatoid arthritis (1 patient), gasket dislocation (3 patients), anterior cruciate ligament injury (1 patient), and medial collateral ligament injury with residual bone cement (1 patient). CONCLUSION: The causes of primary revision after UKA were gasket dislocation, osteophytes, intra-articular loose bodies and tibial prosthesis loosening. Avoidance of these factors may greatly reduce the rate of revision after UKA, improve patient satisfaction and reduce medical burden.

5.
RSC Adv ; 14(17): 11992-12008, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38638887

RESUMO

Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.

6.
Cancer Lett ; : 216882, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636893

RESUMO

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.

7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.

8.
Chem Sci ; 15(12): 4547-4555, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516065

RESUMO

Subcellular metabolomics analysis is crucial for understanding intracellular heterogeneity and accurate drug-cell interactions. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieving this goal. To address this challenge, we propose an artificial intelligence-assisted subcellular mass spectrometry imaging (AI-SMSI) strategy with in situ image segmentation. Based on the nanometer-resolution MSI technique, the protonated guanine and threonine ions were respectively employed as the nucleus and cytoplasmic markers to complete image segmentation at the subcellular level, avoiding mutual interference of signals from various compartments in the cell. With advanced AI models, the metabolites within the different regions could be further integrated and profiled. Through this method, we decrypted the distinct action mechanism of isomeric drugs, doxorubicin (DOX) and epirubicin (EPI), only with a stereochemical inversion at C-4'. Within the cytoplasmic region, fifteen specific metabolites were discovered as biomarkers for distinguishing the drug action difference between DOX and EPI. Moreover, we identified that the downregulations of glutamate and aspartate in the malate-aspartate shuttle pathway may contribute to the higher paratoxicity of DOX. Our current AI-SMSI approach has promising applications for subcellular metabolomics analysis and thus opens new opportunities to further explore drug-cell specific interactions for the long-term pursuit of precision medicine.

9.
Phys Rev Lett ; 132(9): 093403, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489622

RESUMO

We report on the observation of photoassociation resonances in ultracold collisions between ^{23}Na^{40}K molecules and ^{40}K atoms. We perform photoassociation in a long-wavelength optical dipole trap to form deeply bound triatomic molecules in electronically excited states. The atom-molecule Feshbach resonance is used to enhance the free-bound Franck-Condon overlap. The photoassociation into well-defined quantum states of excited triatomic molecules is identified by observing resonantly enhanced loss features. These loss features depend on the polarization of the photoassociation lasers, allowing us to assign rotational quantum numbers. The observation of ultracold atom-molecule photoassociation resonances paves the way toward preparing ground-state triatomic molecules, provides a new high-resolution spectroscopy technique for polyatomic molecules, and is also important to atom-molecule Feshbach resonances.

10.
Anal Chem ; 96(14): 5499-5508, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547315

RESUMO

Characterizing the profiles of proteome and metabolome at the single-cell level is of great significance in single-cell multiomic studies. Herein, we proposed a novel strategy called one-shot single-cell proteome and metabolome analysis (scPMA) to acquire the proteome and metabolome information in a single-cell individual in one injection of LC-MS/MS analysis. Based on the scPMA strategy, a total workflow was developed to achieve the single-cell capture, nanoliter-scale sample pretreatment, one-shot LC injection and separation of the enzyme-digested peptides and metabolites, and dual-zone MS/MS detection for proteome and metabolome profiling. Benefiting from the scPMA strategy, we realized dual-omic analysis of single tumor cells, including A549, HeLa, and HepG2 cells with 816, 578, and 293 protein groups and 72, 91, and 148 metabolites quantified on average. A single-cell perspective experiment for investigating the doxorubicin-induced antitumor effects in both the proteome and metabolome aspects was also performed.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Cromatografia Líquida , Metaboloma , Células HeLa
11.
Poult Sci ; 103(4): 103413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442558

RESUMO

Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHß and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.


Assuntos
Fotoperíodo , Vacinas , Animais , Patos/fisiologia , Galinhas , Reprodução , Imunização/veterinária
12.
Environ Pollut ; 347: 123747, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460590

RESUMO

Rationally switching reactive oxygen species (ROS) reactions in advanced oxidation processes (AOPs) is urgently needed to improve the adaptability and efficiency for the engineering application. Herein we synthesized bimetallic Mn-Pt catalysts based on zeolite to realize the switching of ROS reactions in catalytic ozonation for sustainable degradation of organic pollutants from water. The ROS reactions switched from singlet oxygen (1O2, 71.01%) to radical-dominated (93.79%) pathway by simply introducing defects and changing Pt/Mn ratios. The oxygen vacancy induced by anchoring Mn-Pt species from zeolite external surface (MnPt/H-Beta) to internal framework (MnPt@Si-Beta) exposes more electron-rich Pt2+/Pt4+ redox sites, accelerating the decomposition of O3 to generate •OH via electron transfer and switching ROS reactions. The Mn site acted as a bridge plays a critical role in conducting electrons from organic pollutants to Pt sites, which solidly solves the electron loss of catalysts, facilitating the efficient degradation of pollutants. A 34.7-fold increase in phenol degradation compared with the non-catalytic ozonation and an excellent catalytic stability are achieved by MnPt@Si-Beta/O3. The 1O2-dominated ROS reaction originated from MnPt/H-Beta/O3 exhibits superior performances in anti-interference for Cl-, HCO3-, NO3-, and SO4-. This work establishes a novel strategy for switching ROS reactions to expand the targeted applications of O3 based AOPs for environmental remediation.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Zeolitas , Espécies Reativas de Oxigênio , Oxirredução , Catálise
13.
Nature ; 626(7998): 288-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326594

RESUMO

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

14.
Carcinogenesis ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302114

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific anti-tumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the anti-tumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with superenhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.

15.
Bone Joint Res ; 13(2): 66-82, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38310924

RESUMO

Aims: This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods: Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results: A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high diagnostic value in both the training cohort and external validation cohort (receiver operating characteristic > 0.8). The upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels of immune infiltration as well as the expression of metalloproteinases and mineralization markers, suggesting harmful biological alterations and indicating that these hub genes play an important role in the pathogenesis of OA. A competing endogenous RNA network was constructed to reveal the underlying post-transcriptional regulatory mechanisms. Conclusion: The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and progression of OA, and may be potential therapeutic targets.

16.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383388

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

17.
Phys Rev Lett ; 132(6): 063401, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394555

RESUMO

We report an extensive experimental investigation on the transition from flat-band localization (FBL) to Anderson localization (AL) in a one-dimensional synthetic lattice in the momentum dimension. By driving multiple Bragg processes between designated momentum states, an effective one-dimensional Tasaki lattice is implemented with highly tunable parameters, including nearest-neighbor and next-nearest-neighbor coupling coefficients and onsite energy potentials. With that, a flat-band localization phase is realized and demonstrated via the evolution dynamics of the particle population over different momentum states. The localization effect is undermined when a moderate disorder is introduced to the onsite potential and restored under a strong disorder. We find clear signatures of the FBL-AL transition in the density profile evolution, the inverse participation ratio, and the von Neumann entropy, where good agreement is obtained with theoretical predictions.

18.
BMC Cancer ; 24(1): 220, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365636

RESUMO

BACKGROUND: Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS: The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS: In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION: In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.


Assuntos
Neoplasias Encefálicas , Proteínas que Contêm Bromodomínio , Glioblastoma , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas que Contêm Bromodomínio/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estudos Prospectivos , Sindecana-1/antagonistas & inibidores , Fatores de Transcrição/genética
19.
Nat Commun ; 15(1): 1279, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341466

RESUMO

The shotgun proteomic analysis is currently the most promising single-cell protein sequencing technology, however its identification level of ~1000 proteins per cell is still insufficient for practical applications. Here, we develop a pick-up single-cell proteomic analysis (PiSPA) workflow to achieve a deep identification capable of quantifying up to 3000 protein groups in a mammalian cell using the label-free quantitative method. The PiSPA workflow is specially established for single-cell samples mainly based on a nanoliter-scale microfluidic liquid handling robot, capable of achieving single-cell capture, pretreatment and injection under the pick-up operation strategy. Using this customized workflow with remarkable improvement in protein identification, 2449-3500, 2278-3257 and 1621-2904 protein groups are quantified in single A549 cells (n = 37), HeLa cells (n = 44) and U2OS cells (n = 27) under the DIA (MBR) mode, respectively. Benefiting from the flexible cell picking-up ability, we study HeLa cell migration at the single cell proteome level, demonstrating the potential in practical biological research from single-cell insight.


Assuntos
Proteoma , Proteômica , Animais , Humanos , Células HeLa , Proteômica/métodos , Proteoma/metabolismo , Análise de Célula Única , Fluxo de Trabalho , Mamíferos/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401696

RESUMO

Acute pancreatitis (AP) can lead to death; however, there is no specific treatment for AP. Screening of drugs for AP treatment is rarely performed. Compounds were screened in a primary pancreatic acinar cell and peritoneal macrophage coculture system. Compounds were used in vitro and in vivo. Compound targets were predicted and validated. Among the 18 nitrogen-containing heterocycles, Z10 was shown to decrease the cerulein plus lipopolysaccharide (CL)-induced secretion of both acinar digestive enzymes and macrophage cytokines. Z10 was also shown to ameliorate CL-induced or sodium taurocholate-induced AP in mice. Proteomics analysis and enzyme linked immunosorbent assay (ELISA) revealed that Z10 decreased the levels of D-dopachrome tautomerase (Ddt) within macrophages and those in the extracellular milieu under CL treatment. Z10 also decreased Ddt expression in AP mice. Moreover, exogenous Ddt induced cytokine and digestive enzyme secretion, which could be inhibited by Z10. Ddt knockdown inhibited CL-induced cytokine secretion. Medium from CL-treated macrophages induced the release of amylase by acinar cells, and Ddt knockdown medium decreased amylase secretion. The target of Z10 was predicted to be ERK2. Z10 increased the thermostability of ERK1/2 but not ERK1 K72A/ERK2 K52A. The docking poses of ERK1 and ERK2 with Z10 were similar. Z10 inhibited ERK1/2 phosphorylation, and Ddt levels and cytokines were regulated by ERK1/2 during AP. Additionally, Z10 could not further inhibit cytokines under ERK1/2 knockdown with CL. Thus, this study revealed that Z10-mediated ERK1/2 inhibition decreased Ddt expression and secretion by macrophages. Ddt inhibition decreased cytokine release and digestive enzyme secretion.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Doença Aguda , Citocinas , Amilases/efeitos adversos , Pirazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...